Growth in products of matrices: fastest, average, and generic (2024)

Vladimir ShpilrainDepartment of Mathematics, The City College of New York, New York,NY 10031shpilrain@yahoo.com

Abstract.

The problems that we consider in this paper are as follows. Let A𝐴Aitalic_A and B𝐡Bitalic_B be 2Γ—2222\times 22 Γ— 2 matrices (over reals). Let w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) be a word of length n𝑛nitalic_n. After evaluating w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) as a product of matrices, we get a 2Γ—2222\times 22 Γ— 2 matrix, call it Wπ‘ŠWitalic_W. What is the largest (by the absolute value) possible entry of Wπ‘ŠWitalic_W, over all w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) of length n𝑛nitalic_n, as a function of n𝑛nitalic_n? What is the expected absolute value of the largest (by the absolute value) entry in a random product of n𝑛nitalic_n matrices, where each matrix is A𝐴Aitalic_A or B𝐡Bitalic_B with probability 0.5? What is the Lyapunov exponent for a random matrix product like that? We give partial answer to the first of these questions and an essentially complete answer to the second question. For the third question (the most difficult of the three), we offer a very simple method to produce an upper bound on the Lyapunov exponent in the case where all entries of the matrices A𝐴Aitalic_A and B𝐡Bitalic_B are nonnegative.

1. Introduction

The main problem that we consider in this paper is as follows. Let A𝐴Aitalic_A and B𝐡Bitalic_B be 2Γ—2222\times 22 Γ— 2 matrices (over reals). Let w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) be a word of length n𝑛nitalic_n. After evaluating w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) as a product of matrices, we get a 2Γ—2222\times 22 Γ— 2 matrix, call it Wπ‘ŠWitalic_W. What is the largest (by the absolute value) possible entry of Wπ‘ŠWitalic_W, over all w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) of length n𝑛nitalic_n, as a function of n𝑛nitalic_n?The latter function is usually (although not always) exponential, so we are looking for an answer in the form O⁒(sn)𝑂superscript𝑠𝑛O(s^{n})italic_O ( italic_s start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), i.e., we are looking for the base s𝑠sitalic_s of the exponent; this is what we call the growth rate, and this is sometimes also called the spectral radius of the pair (A,B)𝐴𝐡(A,B)( italic_A , italic_B ) of matrices, see e.g. [11].

For us, the original motivation to address this question came from the problem of estimating the girth of the Cayley graph of 2-generator (semi)groups of matrices over β„€psubscript℀𝑝\mathbb{Z}_{p}blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT. If A𝐴Aitalic_A and B𝐡Bitalic_B generate a free sub(semi)group of S⁒L2⁒(β„€)𝑆subscript𝐿2β„€SL_{2}(\mathbb{Z})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ), then there cannot be any relations of the form u⁒(A,B)=v⁒(A,B)𝑒𝐴𝐡𝑣𝐴𝐡u(A,B)=v(A,B)italic_u ( italic_A , italic_B ) = italic_v ( italic_A , italic_B ) in S⁒L2⁒(β„€p)𝑆subscript𝐿2subscript℀𝑝SL_{2}(\mathbb{Z}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) unless at least one of the entries of the matrix u⁒(A,B)𝑒𝐴𝐡u(A,B)italic_u ( italic_A , italic_B ) or v⁒(A,B)𝑣𝐴𝐡v(A,B)italic_v ( italic_A , italic_B ) is at least p𝑝pitalic_p. Thus, if the largest entry in a product of n𝑛nitalic_n matrices is of the size O⁒(sn)𝑂superscript𝑠𝑛O(s^{n})italic_O ( italic_s start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), then the girth of the Cayley graph of the sub(semi)group of S⁒L2⁒(β„€p)𝑆subscript𝐿2subscript℀𝑝SL_{2}(\mathbb{Z}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) generated by A𝐴Aitalic_A and B𝐡Bitalic_B is O⁒(logs⁑p)𝑂subscript𝑠𝑝O(\log_{s}p)italic_O ( roman_log start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_p ). We note that the problem of estimating the girth of the Cayley graph of 2-generator (semi)groups of matrices in S⁒L2⁒(β„€p)𝑆subscript𝐿2subscript℀𝑝SL_{2}(\mathbb{Z}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) got considerable attention from number theorists, see e.g. [2], [6] [8], [12].

The problem of bounding the girth of the Cayley graph of a 2-generator (semi)group is also relevant to security properties of Cayley hash functions, see e.g. [1], [3], [13], [22]. A hash function takes, as input, a bit string of an arbitrary length and outputs a bit string of a fixed length (say, 512 or 1024 bits).Cayley hashing is based on a simple idea of using a pair ofelements, A𝐴Aitalic_A and B𝐡Bitalic_B, of a semigroup S𝑆Sitalic_S, to hash the β€œ0” and the β€œ1” bit, respectively. Then a bit string is hashed to a product of elements in the natural way.For example, the bit string 1001011 will be hashed to the element B⁒A⁒A⁒B⁒A⁒B⁒B𝐡𝐴𝐴𝐡𝐴𝐡𝐡BAABABBitalic_B italic_A italic_A italic_B italic_A italic_B italic_B of a semigroup S𝑆Sitalic_S. We refer to [20] for a more detailed discussion on relations between security properties of a Cayley hash function and the girth of the corresponding Cayley graph.

In Section 3, we show how one can compute the average growth of entries in a product of n𝑛nitalic_n matrices. This turns out to be the easiest of the three problems (fastest, average, generic growth) and is reduced to solving a system of linear recurrence relations with constant coefficients.

A more difficult problem, of interest in the theory of stochastic processes, is to estimate the growth rate of entries in a random product of n𝑛nitalic_n matrices over reals, each of which is either A𝐴Aitalic_A or B𝐡Bitalic_B with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG (this is what we call generic growth rate). For strictly positive matrices, Pollicott [17] reported an algorithm to estimate the Lyapunov exponent Ξ»=log⁑sπœ†π‘ \lambda=\log sitalic_Ξ» = roman_log italic_s with any desired precision. Here s𝑠sitalic_s is the same as in the first paragraph of the Introduction, and log\logroman_log denotes the natural logarithm. We touch upon this problem in Section 4, although our theoretical contribution in this direction is rather modest: for matrices with nonnegative entries, our method in Section 3 provides an upper bound for the Lyapunov exponent, see Section 4.1. We note that altogether different (analytical) methods for bounding the Lyapunov exponent were used in [9], [18] and [21].

Finally, we mention that studying growth of entries in a product of matrices from a fixed finite set is important for understanding algorithmic complexity (worst-case, average-case, and generic-case) of the word problem in finitely generated groups of matrices, see [16].

2. Fastest Growth

Here are the main two open problems that we address in this section. In what follows, we call a word w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) positive if it includes A𝐴Aitalic_A and B𝐡Bitalic_B with positive exponents only. In what follows, matrices can be considered over any subring of reals (e.g. β„€β„€\mathbb{Z}blackboard_Z or β„šβ„š\mathbb{Q}blackboard_Q).

Problem 1.

Given two 2Γ—2222\times 22 Γ— 2 matrices A𝐴Aitalic_A and B𝐡Bitalic_B, find the largest (by the absolute value) possible entry of a matrix w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ), as a function of the word length n=|w|𝑛𝑀n=|w|italic_n = | italic_w |, over all positive words w𝑀witalic_w of length n𝑛nitalic_n.

For matrices over β„€β„€\mathbb{Z}blackboard_Z, theoretical as well as experimental evidence suggest that words w𝑀witalic_w that provide fastest growth of matrix entries in this context are periodic, i.e., are proper powers.This prompts the following

Conjecture 1.

Given any two 2Γ—2222\times 22 Γ— 2 matrices A𝐴Aitalic_A and B𝐡Bitalic_B over β„€β„€\mathbb{Z}blackboard_Z (or, more generally, over β„šβ„š\mathbb{Q}blackboard_Q), the fastest growth of the largest (by the absolute value) entry of a matrix w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) over all positive words w𝑀witalic_w of length n𝑛nitalic_n is provided by periodic words w𝑀witalic_w. More accurately, for any two 2Γ—2222\times 22 Γ— 2 matrices A𝐴Aitalic_A and B𝐡Bitalic_B, there is an integer rβ‰₯2π‘Ÿ2r\geq 2italic_r β‰₯ 2 and a positive word v⁒(A,B)𝑣𝐴𝐡v(A,B)italic_v ( italic_A , italic_B ) of length rπ‘Ÿritalic_r such that the fastest growth of the largest (by the absolute value) entry of a matrix w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) over all positive words w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) of length n𝑛nitalic_n divisible by rπ‘Ÿritalic_r is provided by words w⁒(A,B)=(v⁒(A,B))nr𝑀𝐴𝐡superscriptπ‘£π΄π΅π‘›π‘Ÿw(A,B)=(v(A,B))^{\frac{n}{r}}italic_w ( italic_A , italic_B ) = ( italic_v ( italic_A , italic_B ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG italic_r end_ARG end_POSTSUPERSCRIPT.

One gets a somewhat weaker conjecture upon replacing β€œperiodic words” by β€œeventually periodic words”, i.e., words of the form u⁒(A,B)⁒(v⁒(A,B))nr𝑒𝐴𝐡superscriptπ‘£π΄π΅π‘›π‘Ÿu(A,B)(v(A,B))^{\frac{n}{r}}italic_u ( italic_A , italic_B ) ( italic_v ( italic_A , italic_B ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG italic_r end_ARG end_POSTSUPERSCRIPT for fixed u⁒(A,B)𝑒𝐴𝐡u(A,B)italic_u ( italic_A , italic_B ) and v⁒(A,B)𝑣𝐴𝐡v(A,B)italic_v ( italic_A , italic_B ).

Conjecture 1 is actually a very special case of a more general Lagarias-Wang finiteness conjecture [11] formulated for arbitrary sets ofdΓ—d𝑑𝑑d\times ditalic_d Γ— italic_d matrices over real numbers. A counterexample to the Lagarias-Wang conjecture was constructed in [7]; it is a pair of matrices A=(1101),B=(Ξ±0Ξ±Ξ±)formulae-sequence𝐴1101𝐡𝛼0𝛼𝛼A=\left(\begin{array}[]{cc}1&1\\0&1\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}\alpha&0\\\alpha&\alpha\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL italic_Ξ± end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_Ξ± end_CELL start_CELL italic_Ξ± end_CELL end_ROW end_ARRAY ), where α𝛼\alphaitalic_Ξ± is an irrational number whose definition is too complex to reproduce here. After rounding to 3 decimal places, α𝛼\alphaitalic_Ξ± becomes 0.749. There is still hope that the finiteness conjecture holds for matrices over β„šβ„š\mathbb{Q}blackboard_Q or at least over β„€β„€\mathbb{Z}blackboard_Z.

Below we summarize what is known about the growth of entries in 2-generator semigroups of matrices, i.e., in matrices of the form w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ), for various popular instances of A𝐴Aitalic_A and B𝐡Bitalic_B.

2.1. Matrices A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(m)π΅π‘šB(m)italic_B ( italic_m )

Denote A⁒(k)=(1k01),B⁒(m)=(10m1)formulae-sequenceπ΄π‘˜1π‘˜01π΅π‘š10π‘š1A(k)=\left(\begin{array}[]{cc}1&k\\0&1\end{array}\right),\hskip 5.69046ptB(m)=\left(\begin{array}[]{cc}1&0\\m&1\end{array}\right)italic_A ( italic_k ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL italic_k end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B ( italic_m ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL italic_m end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ).

First we note that if kβ‹…mβ‰₯4β‹…π‘˜π‘š4k\cdot m\geq 4italic_k β‹… italic_m β‰₯ 4, then the semigroup generated by A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(m)π΅π‘šB(m)italic_B ( italic_m ) is free. Otherwise, it is a big open problem for what values of kπ‘˜kitalic_k and mπ‘šmitalic_m this (semi)group is free; see e.g. [10], [19] and references therein. We just mention here that there is no pair (k,m)π‘˜π‘š(k,m)( italic_k , italic_m ) of rational numbers 0<k,m<2formulae-sequence0π‘˜π‘š20<k,m<20 < italic_k , italic_m < 2 is known such that the group generated by A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(m)π΅π‘šB(m)italic_B ( italic_m ) is free. The relevance of freeness of the semigroup to questions about products of matrices will be mentioned in Section 4.

1. In [3], it was proved that the maximum growth in products of n𝑛nitalic_n matrices of the form w⁒(A⁒(k),B⁒(k))π‘€π΄π‘˜π΅π‘˜w(A(k),B(k))italic_w ( italic_A ( italic_k ) , italic_B ( italic_k ) ) for integers kβ‰₯2π‘˜2k\geq 2italic_k β‰₯ 2 is achieved by the words w=(A⁒(k)⁒B⁒(k))n2𝑀superscriptπ΄π‘˜π΅π‘˜π‘›2w=(A(k)B(k))^{\frac{n}{2}}italic_w = ( italic_A ( italic_k ) italic_B ( italic_k ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (assuming that n𝑛nitalic_n is even). The proof in [3] actually goes through for k=1π‘˜1k=1italic_k = 1 as well. The reason why the case k=1π‘˜1k=1italic_k = 1 was ignored in [3] is that the group generated by A⁒(1)𝐴1A(1)italic_A ( 1 ) and B⁒(1)𝐡1B(1)italic_B ( 1 ) is not free. However, what matters for us in the present paper is that the semigroup generated by A⁒(1)𝐴1A(1)italic_A ( 1 ) and B⁒(1)𝐡1B(1)italic_B ( 1 ) is free.

With these facts established, it is not hard to precisely evaluate the maximum growth rate of the matrix entries in w⁒(A⁒(k),B⁒(k))π‘€π΄π‘˜π΅π‘˜w(A(k),B(k))italic_w ( italic_A ( italic_k ) , italic_B ( italic_k ) ) for various values of kβ‰₯1π‘˜1k\geq 1italic_k β‰₯ 1. This can be done either by solving a system of recurrence relations for the entries of (A⁒(k)⁒B⁒(k))n2superscriptπ΄π‘˜π΅π‘˜π‘›2(A(k)B(k))^{\frac{n}{2}}( italic_A ( italic_k ) italic_B ( italic_k ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (this is how it was done in [3]) or by computing the eigenvalues of the matrix A⁒(k)⁒B⁒(k)π΄π‘˜π΅π‘˜A(k)B(k)italic_A ( italic_k ) italic_B ( italic_k ).

We use the latter method here. Compute A⁒(k)⁒B⁒(k)=(1+k2kk1)π΄π‘˜π΅π‘˜1superscriptπ‘˜2π‘˜π‘˜1A(k)B(k)=\left(\begin{array}[]{cc}1+k^{2}&k\\k&1\end{array}\right)italic_A ( italic_k ) italic_B ( italic_k ) = ( start_ARRAY start_ROW start_CELL 1 + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_k end_CELL end_ROW start_ROW start_CELL italic_k end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ). The largest eigenvalue of this matrix is s=12⁒(k+k2+4)𝑠12π‘˜superscriptπ‘˜24s=\frac{1}{2}(k+\sqrt{k^{2}+4})italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_k + square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG ).

In particular, for k=2π‘˜2k=2italic_k = 2 the largest eigenvalue of A⁒(2)⁒B⁒(2)𝐴2𝐡2A(2)B(2)italic_A ( 2 ) italic_B ( 2 ) is 3+8383+\sqrt{8}3 + square-root start_ARG 8 end_ARG. Then the largest entry of (A⁒(2)⁒B⁒(2))n2superscript𝐴2𝐡2𝑛2(A(2)B(2))^{\frac{n}{2}}( italic_A ( 2 ) italic_B ( 2 ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT is O⁒((3+8)n2)=O⁒((1+2)n)𝑂superscript38𝑛2𝑂superscript12𝑛O((\sqrt{3+\sqrt{8}})^{\frac{n}{2}})=O((1+\sqrt{2})^{n})italic_O ( ( square-root start_ARG 3 + square-root start_ARG 8 end_ARG end_ARG ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ) = italic_O ( ( 1 + square-root start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ).Note that 1+2β‰ˆ2.414122.4141+\sqrt{2}\approx 2.4141 + square-root start_ARG 2 end_ARG β‰ˆ 2.414.

In fact, [3] gives a precise formula for the largest entry in (A⁒(2)⁒B⁒(2))n2superscript𝐴2𝐡2𝑛2(A(2)B(2))^{\frac{n}{2}}( italic_A ( 2 ) italic_B ( 2 ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT. It is
(12+18)⁒(1+2)n+(12βˆ’18)⁒(1βˆ’2)n1218superscript12𝑛1218superscript12𝑛(\frac{1}{2}+\frac{1}{\sqrt{8}})(1+\sqrt{2})^{n}+(\frac{1}{2}-\frac{1}{\sqrt{8%}})(1-\sqrt{2})^{n}( divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG square-root start_ARG 8 end_ARG end_ARG ) ( 1 + square-root start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG - divide start_ARG 1 end_ARG start_ARG square-root start_ARG 8 end_ARG end_ARG ) ( 1 - square-root start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT.

2. As one would expect, the maximum growth of the entries in matrices w⁒(A⁒(1),B⁒(1))𝑀𝐴1𝐡1w(A(1),B(1))italic_w ( italic_A ( 1 ) , italic_B ( 1 ) ) is the slowest among all w⁒(A⁒(k),B⁒(k))π‘€π΄π‘˜π΅π‘˜w(A(k),B(k))italic_w ( italic_A ( italic_k ) , italic_B ( italic_k ) ) for integers kβ‰₯1π‘˜1k\geq 1italic_k β‰₯ 1. The largest entries in the corresponding matrices (A⁒(1)⁒B⁒(1))n2superscript𝐴1𝐡1𝑛2(A(1)B(1))^{\frac{n}{2}}( italic_A ( 1 ) italic_B ( 1 ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT are O⁒((32+52)n)𝑂superscript3252𝑛O((\frac{3}{2}+\frac{\sqrt{5}}{2})^{n})italic_O ( ( divide start_ARG 3 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Note that 32+52β‰ˆ1.61832521.618\frac{3}{2}+\frac{\sqrt{5}}{2}\approx 1.618divide start_ARG 3 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG 5 end_ARG end_ARG start_ARG 2 end_ARG β‰ˆ 1.618.

3. In [6], the authors have determined the maximum growth of the entries in matrices w⁒(A⁒(k),B⁒(m))π‘€π΄π‘˜π΅π‘šw(A(k),B(m))italic_w ( italic_A ( italic_k ) , italic_B ( italic_m ) ) for all integer k,mβ‰₯1π‘˜π‘š1k,m\geq 1italic_k , italic_m β‰₯ 1.

Now we establish the following generalization of the above mentioned results from [3] and [6]:

Theorem 1.

The maximum growth of the largest entry in a product of n𝑛nitalic_n matrices of the form w⁒(A⁒(k),B⁒(m))π‘€π΄π‘˜π΅π‘šw(A(k),B(m))italic_w ( italic_A ( italic_k ) , italic_B ( italic_m ) ) for any real numbers k,mβ‰₯2π‘˜π‘š2k,m\geq 2italic_k , italic_m β‰₯ 2 is achieved by the words (A⁒(k)⁒B⁒(m))n2superscriptπ΄π‘˜π΅π‘šπ‘›2(A(k)B(m))^{\frac{n}{2}}( italic_A ( italic_k ) italic_B ( italic_m ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT and (B⁒(m)⁒A⁒(k))n2superscriptπ΅π‘šπ΄π‘˜π‘›2(B(m)A(k))^{\frac{n}{2}}( italic_B ( italic_m ) italic_A ( italic_k ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (assuming that n𝑛nitalic_n is even). The same holds for k=m=1π‘˜π‘š1k=m=1italic_k = italic_m = 1.

Proof.

First we consider the case k,mβ‰₯2π‘˜π‘š2k,m\geq 2italic_k , italic_m β‰₯ 2.We are going to use induction by the length of w=w⁒(A⁒(k),B⁒(m))π‘€π‘€π΄π‘˜π΅π‘šw=w(A(k),B(m))italic_w = italic_w ( italic_A ( italic_k ) , italic_B ( italic_m ) ), as follows. Let w𝑀witalic_w have length n+2,nβ‰₯2𝑛2𝑛2n+2,~{}n\geq 2italic_n + 2 , italic_n β‰₯ 2, and let u𝑒uitalic_u be the prefix of w𝑀witalic_w of an even length n𝑛nitalic_n. Without loss of generality, we can assume that u𝑒uitalic_u ends with A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ).

Let the matrix M=u⁒(A⁒(k),B⁒(m))π‘€π‘’π΄π‘˜π΅π‘šM=u(A(k),B(m))italic_M = italic_u ( italic_A ( italic_k ) , italic_B ( italic_m ) ) be (xyzt)π‘₯𝑦𝑧𝑑\left(\begin{array}[]{cc}x&y\\z&t\end{array}\right)( start_ARRAY start_ROW start_CELL italic_x end_CELL start_CELL italic_y end_CELL end_ROW start_ROW start_CELL italic_z end_CELL start_CELL italic_t end_CELL end_ROW end_ARRAY ), where x,y,z,tπ‘₯𝑦𝑧𝑑x,y,z,titalic_x , italic_y , italic_z , italic_t obviously are nonnegative numbers. Moreover, we can assume that M𝑀Mitalic_M is not a power of A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) or B⁒(m)π΅π‘šB(m)italic_B ( italic_m ) since in those cases, the growth of the largest entry is the slowest (linear). Under this assumption, all the entries of M𝑀Mitalic_M are going to be strictly positive.

Since we assumed that u𝑒uitalic_u ends with A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ), we have yβ‰₯k⁒x,tβ‰₯k⁒zformulae-sequenceπ‘¦π‘˜π‘₯π‘‘π‘˜π‘§y\geq kx,t\geq kzitalic_y β‰₯ italic_k italic_x , italic_t β‰₯ italic_k italic_z, so in particular, the largest entry of the matrix M𝑀Mitalic_M is in the second column. If u𝑒uitalic_u begins with B⁒(m)π΅π‘šB(m)italic_B ( italic_m ), then the largest entry of the matrix M𝑀Mitalic_M is in the second row, i.e., it is t𝑑titalic_t. Otherwise, it is y𝑦yitalic_y.

Now we are going to list all 4 possible ways to get to w𝑀witalic_w from u𝑒uitalic_u by multiplying u𝑒uitalic_u by two matrices, A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) or B⁒(m)π΅π‘šB(m)italic_B ( italic_m ).

1. M⁒A⁒(k)⁒A⁒(k)=(xy+2⁒k⁒xzt+2⁒k⁒z)π‘€π΄π‘˜π΄π‘˜π‘₯𝑦2π‘˜π‘₯𝑧𝑑2π‘˜π‘§MA(k)A(k)=\left(\begin{array}[]{cc}x&y+2kx\\z&t+2kz\end{array}\right)italic_M italic_A ( italic_k ) italic_A ( italic_k ) = ( start_ARRAY start_ROW start_CELL italic_x end_CELL start_CELL italic_y + 2 italic_k italic_x end_CELL end_ROW start_ROW start_CELL italic_z end_CELL start_CELL italic_t + 2 italic_k italic_z end_CELL end_ROW end_ARRAY ).

2. M⁒B⁒(m)⁒B⁒(m)=(x+2⁒m⁒yyz+2⁒m⁒tt)π‘€π΅π‘šπ΅π‘šπ‘₯2π‘šπ‘¦π‘¦π‘§2π‘šπ‘‘π‘‘MB(m)B(m)=\left(\begin{array}[]{cc}x+2my&y\\z+2mt&t\end{array}\right)italic_M italic_B ( italic_m ) italic_B ( italic_m ) = ( start_ARRAY start_ROW start_CELL italic_x + 2 italic_m italic_y end_CELL start_CELL italic_y end_CELL end_ROW start_ROW start_CELL italic_z + 2 italic_m italic_t end_CELL start_CELL italic_t end_CELL end_ROW end_ARRAY ).

3. M⁒B⁒(m)⁒A⁒(k)=(x+m⁒yk⁒x+(k⁒m+1)⁒yz+m⁒tk⁒z+(k⁒m+1)⁒t)π‘€π΅π‘šπ΄π‘˜π‘₯π‘šπ‘¦π‘˜π‘₯π‘˜π‘š1π‘¦π‘§π‘šπ‘‘π‘˜π‘§π‘˜π‘š1𝑑MB(m)A(k)=\left(\begin{array}[]{cc}x+my&kx+(km+1)y\\z+mt&kz+(km+1)t\end{array}\right)italic_M italic_B ( italic_m ) italic_A ( italic_k ) = ( start_ARRAY start_ROW start_CELL italic_x + italic_m italic_y end_CELL start_CELL italic_k italic_x + ( italic_k italic_m + 1 ) italic_y end_CELL end_ROW start_ROW start_CELL italic_z + italic_m italic_t end_CELL start_CELL italic_k italic_z + ( italic_k italic_m + 1 ) italic_t end_CELL end_ROW end_ARRAY ).

4. M⁒A⁒(k)⁒B⁒(m)=((k⁒m+1)⁒x+m⁒yy+k⁒x(k⁒m+1)⁒z+m⁒tk⁒z+t)π‘€π΄π‘˜π΅π‘šπ‘˜π‘š1π‘₯π‘šπ‘¦π‘¦π‘˜π‘₯π‘˜π‘š1π‘§π‘šπ‘‘π‘˜π‘§π‘‘MA(k)B(m)=\left(\begin{array}[]{cc}(km+1)x+my&y+kx\\(km+1)z+mt&kz+t\end{array}\right)italic_M italic_A ( italic_k ) italic_B ( italic_m ) = ( start_ARRAY start_ROW start_CELL ( italic_k italic_m + 1 ) italic_x + italic_m italic_y end_CELL start_CELL italic_y + italic_k italic_x end_CELL end_ROW start_ROW start_CELL ( italic_k italic_m + 1 ) italic_z + italic_m italic_t end_CELL start_CELL italic_k italic_z + italic_t end_CELL end_ROW end_ARRAY ).

We claim that the matrix M⁒B⁒(m)⁒A⁒(k)π‘€π΅π‘šπ΄π‘˜MB(m)A(k)italic_M italic_B ( italic_m ) italic_A ( italic_k ) has the largest entries of the 4 matrices above.To begin, compare the entry k⁒x+(k⁒m+1)⁒yπ‘˜π‘₯π‘˜π‘š1𝑦kx+(km+1)yitalic_k italic_x + ( italic_k italic_m + 1 ) italic_y of the matrix 3 to the entry y+2⁒k⁒x𝑦2π‘˜π‘₯y+2kxitalic_y + 2 italic_k italic_x of the matrix 1. (This is the only non-obvious comparison between the entries of the matrices 3 and 1.) Since we are under the assumption k⁒x≀yπ‘˜π‘₯𝑦kx\leq yitalic_k italic_x ≀ italic_y, we have y+2⁒k⁒x≀3⁒y𝑦2π‘˜π‘₯3𝑦y+2kx\leq 3yitalic_y + 2 italic_k italic_x ≀ 3 italic_y, whereas k⁒x+(k⁒m+1)⁒y>3⁒yπ‘˜π‘₯π‘˜π‘š1𝑦3𝑦kx+(km+1)y>3yitalic_k italic_x + ( italic_k italic_m + 1 ) italic_y > 3 italic_y since k⁒m+1>3π‘˜π‘š13km+1>3italic_k italic_m + 1 > 3.

Comparison between the entries of the matrices 3 and 2 is similar. Here it is sufficient to notice that k⁒m+1>2⁒mπ‘˜π‘š12π‘škm+1>2mitalic_k italic_m + 1 > 2 italic_m.

Now to the most nontrivial comparison, between the entries of the matrices 3 and 4. First let us compare x+m⁒yπ‘₯π‘šπ‘¦x+myitalic_x + italic_m italic_y to y+k⁒xπ‘¦π‘˜π‘₯y+kxitalic_y + italic_k italic_x. From the assumption k⁒x≀yπ‘˜π‘₯𝑦kx\leq yitalic_k italic_x ≀ italic_y, we get y+k⁒x≀2⁒yπ‘¦π‘˜π‘₯2𝑦y+kx\leq 2yitalic_y + italic_k italic_x ≀ 2 italic_y, whereas x+m⁒y>2⁒yπ‘₯π‘šπ‘¦2𝑦x+my>2yitalic_x + italic_m italic_y > 2 italic_y. Thus, x+m⁒y>y+k⁒xπ‘₯π‘šπ‘¦π‘¦π‘˜π‘₯x+my>y+kxitalic_x + italic_m italic_y > italic_y + italic_k italic_x. In a similar way, we get z+m⁒t>k⁒z+tπ‘§π‘šπ‘‘π‘˜π‘§π‘‘z+mt>kz+titalic_z + italic_m italic_t > italic_k italic_z + italic_t.

Then, let us compare k⁒x+(k⁒m+1)⁒yπ‘˜π‘₯π‘˜π‘š1𝑦kx+(km+1)yitalic_k italic_x + ( italic_k italic_m + 1 ) italic_y to (k⁒m+1)⁒x+m⁒yπ‘˜π‘š1π‘₯π‘šπ‘¦(km+1)x+my( italic_k italic_m + 1 ) italic_x + italic_m italic_y. Since k⁒m⁒x≀m⁒yπ‘˜π‘šπ‘₯π‘šπ‘¦kmx\leq myitalic_k italic_m italic_x ≀ italic_m italic_y, we have (k⁒m+1)⁒x+m⁒y≀x+2⁒m⁒yπ‘˜π‘š1π‘₯π‘šπ‘¦π‘₯2π‘šπ‘¦(km+1)x+my\leq x+2my( italic_k italic_m + 1 ) italic_x + italic_m italic_y ≀ italic_x + 2 italic_m italic_y, whereas k⁒x+(k⁒m+1)⁒y>x+2⁒m⁒yπ‘˜π‘₯π‘˜π‘š1𝑦π‘₯2π‘šπ‘¦kx+(km+1)y>x+2myitalic_k italic_x + ( italic_k italic_m + 1 ) italic_y > italic_x + 2 italic_m italic_y because k>1π‘˜1k>1italic_k > 1 and k⁒m+1>2π‘˜π‘š12km+1>2italic_k italic_m + 1 > 2.Therefore, k⁒x+(k⁒m+1)⁒y>(k⁒m+1)⁒x+m⁒yπ‘˜π‘₯π‘˜π‘š1π‘¦π‘˜π‘š1π‘₯π‘šπ‘¦kx+(km+1)y>(km+1)x+myitalic_k italic_x + ( italic_k italic_m + 1 ) italic_y > ( italic_k italic_m + 1 ) italic_x + italic_m italic_y. In a similar way, we get k⁒z+(k⁒m+1)⁒t>(k⁒m+1)⁒z+m⁒tπ‘˜π‘§π‘˜π‘š1π‘‘π‘˜π‘š1π‘§π‘šπ‘‘kz+(km+1)t>(km+1)z+mtitalic_k italic_z + ( italic_k italic_m + 1 ) italic_t > ( italic_k italic_m + 1 ) italic_z + italic_m italic_t.

Thus, not only is the norm of the matrix 3 greater than that of the matrix 4, but the entries of the second column of the matrix 3 are strictly larger than the entries of the first column of the matrix 4, and the entries of the first column of the matrix 3 are strictly larger than the entries of the second column of the matrix 4.

The bottom line is: when comparing the matrix 3 to any other matrix K𝐾Kitalic_K on the list, there is a permutation on the columns of K𝐾Kitalic_K such that after this permutation, the entries of 3 are not less than the corresponding entries of K𝐾Kitalic_K, and there is at least one entry of 3 that is strictly larger than the corresponding entry of K𝐾Kitalic_K.

Now we get to a special case k=m=1π‘˜π‘š1k=m=1italic_k = italic_m = 1. In this case, our 4 matrices look as follows.

1. M⁒A⁒(1)⁒A⁒(1)=(xy+2⁒xzt+2⁒z)𝑀𝐴1𝐴1π‘₯𝑦2π‘₯𝑧𝑑2𝑧MA(1)A(1)=\left(\begin{array}[]{cc}x&y+2x\\z&t+2z\end{array}\right)italic_M italic_A ( 1 ) italic_A ( 1 ) = ( start_ARRAY start_ROW start_CELL italic_x end_CELL start_CELL italic_y + 2 italic_x end_CELL end_ROW start_ROW start_CELL italic_z end_CELL start_CELL italic_t + 2 italic_z end_CELL end_ROW end_ARRAY ).

2. M⁒B⁒(1)⁒B⁒(1)=(x+2⁒yyz+2⁒tt)𝑀𝐡1𝐡1π‘₯2𝑦𝑦𝑧2𝑑𝑑MB(1)B(1)=\left(\begin{array}[]{cc}x+2y&y\\z+2t&t\end{array}\right)italic_M italic_B ( 1 ) italic_B ( 1 ) = ( start_ARRAY start_ROW start_CELL italic_x + 2 italic_y end_CELL start_CELL italic_y end_CELL end_ROW start_ROW start_CELL italic_z + 2 italic_t end_CELL start_CELL italic_t end_CELL end_ROW end_ARRAY ).

3. M⁒B⁒(1)⁒A⁒(1)=(x+yx+2⁒yz+tz+2⁒t)𝑀𝐡1𝐴1π‘₯𝑦π‘₯2𝑦𝑧𝑑𝑧2𝑑MB(1)A(1)=\left(\begin{array}[]{cc}x+y&x+2y\\z+t&z+2t\end{array}\right)italic_M italic_B ( 1 ) italic_A ( 1 ) = ( start_ARRAY start_ROW start_CELL italic_x + italic_y end_CELL start_CELL italic_x + 2 italic_y end_CELL end_ROW start_ROW start_CELL italic_z + italic_t end_CELL start_CELL italic_z + 2 italic_t end_CELL end_ROW end_ARRAY ).

4. M⁒A⁒(1)⁒B⁒(1)=(2⁒x+yy+x2⁒z+tz+t)𝑀𝐴1𝐡12π‘₯𝑦𝑦π‘₯2𝑧𝑑𝑧𝑑MA(1)B(1)=\left(\begin{array}[]{cc}2x+y&y+x\\2z+t&z+t\end{array}\right)italic_M italic_A ( 1 ) italic_B ( 1 ) = ( start_ARRAY start_ROW start_CELL 2 italic_x + italic_y end_CELL start_CELL italic_y + italic_x end_CELL end_ROW start_ROW start_CELL 2 italic_z + italic_t end_CELL start_CELL italic_z + italic_t end_CELL end_ROW end_ARRAY ).

We are still under the assumptions k⁒x≀yπ‘˜π‘₯𝑦kx\leq yitalic_k italic_x ≀ italic_y and k⁒z≀tπ‘˜π‘§π‘‘kz\leq titalic_k italic_z ≀ italic_t, i.e., x≀yπ‘₯𝑦x\leq yitalic_x ≀ italic_y and z≀t𝑧𝑑z\leq titalic_z ≀ italic_t in this case. Note that we cannot have x=yπ‘₯𝑦x=yitalic_x = italic_y and z=t𝑧𝑑z=titalic_z = italic_t at the same time since this would make the matrix M𝑀Mitalic_M singular, which is impossible. Without loss of generality, we can assume that x<yπ‘₯𝑦x<yitalic_x < italic_y.Also, recall that under our assumptions x,y,z,tπ‘₯𝑦𝑧𝑑x,y,z,titalic_x , italic_y , italic_z , italic_t are all strictly positive.

Comparison between the matrices 3 and 2 is obvious. To compare the matrices 3 and 1, we note that x+2⁒y>y+2⁒xπ‘₯2𝑦𝑦2π‘₯x+2y>y+2xitalic_x + 2 italic_y > italic_y + 2 italic_x. Indeed, taking everything to the left givesyβˆ’x>0𝑦π‘₯0y-x>0italic_y - italic_x > 0, which holds under our assumptions. Similarly, z+2⁒tβ‰₯t+2⁒z𝑧2𝑑𝑑2𝑧z+2t\geq t+2zitalic_z + 2 italic_t β‰₯ italic_t + 2 italic_z. Then, x+y>xπ‘₯𝑦π‘₯x+y>xitalic_x + italic_y > italic_x and z+t>z𝑧𝑑𝑧z+t>zitalic_z + italic_t > italic_z because y,t>0𝑦𝑑0y,t>0italic_y , italic_t > 0.

When comparing the matrices 3 and 4, we see that the first column of the matrix 3 is the same as the second column of the matrix 4. Comparing entries in the second column of 3 to those in the first column of 4, we have x+2⁒y>y+2⁒xπ‘₯2𝑦𝑦2π‘₯x+2y>y+2xitalic_x + 2 italic_y > italic_y + 2 italic_x and z+2⁒tβ‰₯2⁒z+t𝑧2𝑑2𝑧𝑑z+2t\geq 2z+titalic_z + 2 italic_t β‰₯ 2 italic_z + italic_t.

Again, the bottom line is: when comparing the matrix 3 to any other matrix K𝐾Kitalic_K on the list, there is a permutation on the columns of K𝐾Kitalic_K such that after this permutation, the entries of 3 are not less than the corresponding entries of K𝐾Kitalic_K, and there is at least one entry of 3 that is strictly larger than the corresponding entry of K𝐾Kitalic_K. This completes the proof.

∎

2.2. Other pairs of matrices

Our Theorem 1 can help handle some other pairs of matrices as well. For example, let X=(1101),Y=(1011)formulae-sequence𝑋1101π‘Œ1011X=\left(\begin{array}[]{cc}1&1\\0&1\end{array}\right),\hskip 5.69046ptY=\left(\begin{array}[]{cc}1&0\\1&1\end{array}\right)italic_X = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_Y = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ). Then, let U=X⁒Y=(2111),V=Y⁒X=(1112)formulae-sequenceπ‘ˆπ‘‹π‘Œ2111π‘‰π‘Œπ‘‹1112U=XY=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptV=YX=\left(\begin{array}[]{cc}1&1\\1&2\end{array}\right)italic_U = italic_X italic_Y = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_V = italic_Y italic_X = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 2 end_CELL end_ROW end_ARRAY ).

Then the fastest growth of the entries in a product of the matrices Uπ‘ˆUitalic_U and V𝑉Vitalic_V is given by matrices Unsuperscriptπ‘ˆπ‘›U^{n}italic_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT or Vnsuperscript𝑉𝑛V^{n}italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT because in these products, the matrices X𝑋Xitalic_X and Yπ‘ŒYitalic_Y alternate and this gives the fastest growth according to Theorem 1. The largest eigenvalue of either matrix (Uπ‘ˆUitalic_U or V𝑉Vitalic_V) is 2, so the largest entries of Unsuperscriptπ‘ˆπ‘›U^{n}italic_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and Vnsuperscript𝑉𝑛V^{n}italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT are O⁒(2n)𝑂superscript2𝑛O(2^{n})italic_O ( 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ).

A similar argument applies, in particular, to the pair of matrices (X⁒Y,Y)π‘‹π‘Œπ‘Œ(XY,Y)( italic_X italic_Y , italic_Y ) as well as to pairs of matrices of the form (A⁒(k)⁒B⁒(m),B⁒(m)⁒A⁒(k))π΄π‘˜π΅π‘šπ΅π‘šπ΄π‘˜(A(k)B(m),B(m)A(k))( italic_A ( italic_k ) italic_B ( italic_m ) , italic_B ( italic_m ) italic_A ( italic_k ) ) with k,mβ‰₯2π‘˜π‘š2k,m\geq 2italic_k , italic_m β‰₯ 2.

Another example is given by the matrices, say, U=X⁒Y⁒X=(2312),V=Y=(1011)formulae-sequenceπ‘ˆπ‘‹π‘Œπ‘‹2312π‘‰π‘Œ1011U=XYX=\left(\begin{array}[]{cc}2&3\\1&2\end{array}\right),\hskip 5.69046ptV=Y=\left(\begin{array}[]{cc}1&0\\1&1\end{array}\right)italic_U = italic_X italic_Y italic_X = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 3 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 2 end_CELL end_ROW end_ARRAY ) , italic_V = italic_Y = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ).Again by Theorem 1, the fastest growth of the entries in a product of the matrices Uπ‘ˆUitalic_U and V𝑉Vitalic_V is given by matrices (U⁒V)n2superscriptπ‘ˆπ‘‰π‘›2(UV)^{\frac{n}{2}}( italic_U italic_V ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT since U⁒V=X⁒Y⁒X⁒Yπ‘ˆπ‘‰π‘‹π‘Œπ‘‹π‘ŒUV=XYXYitalic_U italic_V = italic_X italic_Y italic_X italic_Y.

Now let us look at the pair (X⁒Y,X⁒Y2)π‘‹π‘Œπ‘‹superscriptπ‘Œ2(XY,XY^{2})( italic_X italic_Y , italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ); this pair was used as an example in Pollicott’s paper [17]. Denote U=X⁒Y=(2111),V=X⁒Y2=(3121)formulae-sequenceπ‘ˆπ‘‹π‘Œ2111𝑉𝑋superscriptπ‘Œ23121U=XY=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptV=XY^{2}=\left(\begin{array}[]{cc}3&1\\2&1\end{array}\right)italic_U = italic_X italic_Y = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_V = italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ). It may seem that the fastest growth should be provided by matrices Unsuperscriptπ‘ˆπ‘›U^{n}italic_U start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT since that would give an alternating product of X𝑋Xitalic_X and Yπ‘ŒYitalic_Y. However, here V=X⁒Y2𝑉𝑋superscriptπ‘Œ2V=XY^{2}italic_V = italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is just a single matrix, not a product of matrices, so it is obviously more β€œbeneficial” for a faster growth to have powers of V𝑉Vitalic_V rather than powers of Uπ‘ˆUitalic_U or any combination of Uπ‘ˆUitalic_U and V𝑉Vitalic_V.

The largest eigenvalue of the matrix V𝑉Vitalic_V is 2+3232+\sqrt{3}2 + square-root start_ARG 3 end_ARG, so the largest entry in Vnsuperscript𝑉𝑛V^{n}italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is O⁒((2+3)n)𝑂superscript23𝑛O((2+\sqrt{3})^{n})italic_O ( ( 2 + square-root start_ARG 3 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ).

2.3. Matrices A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(βˆ’2)𝐡2B(-2)italic_B ( - 2 )

This pair of matrices is rather mysterious in the sense that it is not at all clear what positive words w⁒(A,B)𝑀𝐴𝐡w(A,B)italic_w ( italic_A , italic_B ) would give the fastest growth of the largest entry.Note that the matrix A⁒(2)⁒B⁒(βˆ’2)=(βˆ’32βˆ’21)𝐴2𝐡23221A(2)B(-2)=\left(\begin{array}[]{cc}-3&2\\-2&1\end{array}\right)italic_A ( 2 ) italic_B ( - 2 ) = ( start_ARRAY start_ROW start_CELL - 3 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL - 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) has the eigenvalue Ξ»=βˆ’1πœ†1\lambda=-1italic_Ξ» = - 1 of multiplicity 2, so the entries of the matrices (A⁒(2)⁒B⁒(βˆ’2))n2superscript𝐴2𝐡2𝑛2(A(2)B(-2))^{\frac{n}{2}}( italic_A ( 2 ) italic_B ( - 2 ) ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT grow linearly in n𝑛nitalic_n.

According to computer experiments, the largest (by the absolute value) entries among all w⁒(A⁒(2),B⁒(βˆ’2))𝑀𝐴2𝐡2w(A(2),B(-2))italic_w ( italic_A ( 2 ) , italic_B ( - 2 ) ) of length n𝑛nitalic_n occur in (A2⁒B2)n4superscriptsuperscript𝐴2superscript𝐡2𝑛4(A^{2}B^{2})^{\frac{n}{4}}( italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT, and these entries are O⁒((2+3)n)𝑂superscript23𝑛O((\sqrt{2+\sqrt{3}})^{n})italic_O ( ( square-root start_ARG 2 + square-root start_ARG 3 end_ARG end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) since (2+3)2=7+48superscript232748(2+\sqrt{3})^{2}=7+\sqrt{48}( 2 + square-root start_ARG 3 end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 7 + square-root start_ARG 48 end_ARG is the largest (by the absolute value) eigenvalue of the matrix A2⁒B2=(βˆ’154βˆ’41)superscript𝐴2superscript𝐡215441A^{2}B^{2}=\left(\begin{array}[]{cc}-15&4\\-4&1\end{array}\right)italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL - 15 end_CELL start_CELL 4 end_CELL end_ROW start_ROW start_CELL - 4 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ). Note that 2+3β‰ˆ1.93231.93\sqrt{2+\sqrt{3}}\approx 1.93square-root start_ARG 2 + square-root start_ARG 3 end_ARG end_ARG β‰ˆ 1.93.

3. Average Growth

Perhaps surprisingly, computing the average growth rate of the entries in a random product of n𝑛nitalic_n matrices A𝐴Aitalic_A and B𝐡Bitalic_B (where each factor is A𝐴Aitalic_A or B𝐡Bitalic_B with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG) is easier than computing the maximum growth rate (Section 2) or generic growth rate (Section 4).

Our method is based on solving a system of linear recurrence relations with constant coefficients. To illustrate this method, let us first determine the average growth rate of the entries in a random product of n𝑛nitalic_n matrices A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(k)π΅π‘˜B(k)italic_B ( italic_k ) (see Section 2.1), for some small integer values of kπ‘˜kitalic_k.

3.1. Average growth for products of A⁒(1)𝐴1A(1)italic_A ( 1 ) and B⁒(1)𝐡1B(1)italic_B ( 1 )

Let (anbncndn)subscriptπ‘Žπ‘›subscript𝑏𝑛subscript𝑐𝑛subscript𝑑𝑛\left(\begin{array}[]{cc}a_{n}&b_{n}\\c_{n}&d_{n}\end{array}\right)( start_ARRAY start_ROW start_CELL italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_c start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL italic_d start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) denote the result of multiplying n𝑛nitalic_n matrices where each factor is A⁒(1)𝐴1A(1)italic_A ( 1 ) or B⁒(1)𝐡1B(1)italic_B ( 1 ) with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG. Denote the expectation of ansubscriptπ‘Žπ‘›a_{n}italic_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT by aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, etc. Then, using linearity of the expectation, we have the following recurrence relations for the expectations:

aΒ―n=12⁒aΒ―nβˆ’1+12⁒(aΒ―nβˆ’1+bΒ―nβˆ’1)=aΒ―nβˆ’1+12⁒bΒ―nβˆ’1subscriptΒ―π‘Žπ‘›12subscriptΒ―π‘Žπ‘›112subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›112subscript¯𝑏𝑛1\bar{a}_{n}=\frac{1}{2}\bar{a}_{n-1}+\frac{1}{2}(\bar{a}_{n-1}+\bar{b}_{n-1})=%\bar{a}_{n-1}+\frac{1}{2}\bar{b}_{n-1}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

bΒ―n=12⁒(aΒ―nβˆ’1+bΒ―nβˆ’1)+12⁒bΒ―nβˆ’1=12⁒aΒ―nβˆ’1+bΒ―nβˆ’1subscript¯𝑏𝑛12subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛112subscript¯𝑏𝑛112subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{b}_{n}=\frac{1}{2}(\bar{a}_{n-1}+\bar{b}_{n-1})+\frac{1}{2}\bar{b}_{n-1}=%\frac{1}{2}\bar{a}_{n-1}+\bar{b}_{n-1}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

From this, bΒ―n=2⁒aΒ―nβˆ’1βˆ’32⁒aΒ―nsubscript¯𝑏𝑛2subscriptΒ―π‘Žπ‘›132subscriptΒ―π‘Žπ‘›\bar{b}_{n}=2\bar{a}_{n-1}-\frac{3}{2}\bar{a}_{n}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, and then aΒ―n=2⁒aΒ―nβˆ’1βˆ’34⁒aΒ―nβˆ’2subscriptΒ―π‘Žπ‘›2subscriptΒ―π‘Žπ‘›134subscriptΒ―π‘Žπ‘›2\bar{a}_{n}=2\bar{a}_{n-1}-\frac{3}{4}\bar{a}_{n-2}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - divide start_ARG 3 end_ARG start_ARG 4 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT. Solving the latter recurrence relation for aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, we get that aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is a linear combination of (32)nsuperscript32𝑛(\frac{3}{2})^{n}( divide start_ARG 3 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and (12)nsuperscript12𝑛(\frac{1}{2})^{n}( divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Therefore, aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is O⁒((32)n)𝑂superscript32𝑛O((\frac{3}{2})^{n})italic_O ( ( divide start_ARG 3 end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), and so is bΒ―nsubscript¯𝑏𝑛\bar{b}_{n}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. The recurrence relations for cΒ―nsubscript¯𝑐𝑛\bar{c}_{n}overΒ― start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and dΒ―nsubscript¯𝑑𝑛\bar{d}_{n}overΒ― start_ARG italic_d end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are similar.

3.2. Average growth for products of A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 )

Using the same notation in this case, we get

aΒ―n=12⁒aΒ―nβˆ’1+12⁒(aΒ―nβˆ’1+2⁒bΒ―nβˆ’1)=aΒ―nβˆ’1+bΒ―nβˆ’1subscriptΒ―π‘Žπ‘›12subscriptΒ―π‘Žπ‘›112subscriptΒ―π‘Žπ‘›12subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{a}_{n}=\frac{1}{2}\bar{a}_{n-1}+\frac{1}{2}(\bar{a}_{n-1}+2\bar{b}_{n-1})%=\bar{a}_{n-1}+\bar{b}_{n-1}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + 2 overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

bΒ―n=12⁒(2⁒aΒ―nβˆ’1+bΒ―nβˆ’1)+12⁒bΒ―nβˆ’1=aΒ―nβˆ’1+bΒ―nβˆ’1subscript¯𝑏𝑛122subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛112subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{b}_{n}=\frac{1}{2}(2\bar{a}_{n-1}+\bar{b}_{n-1})+\frac{1}{2}\bar{b}_{n-1}%=\bar{a}_{n-1}+\bar{b}_{n-1}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

From this we see that bΒ―n=aΒ―nsubscript¯𝑏𝑛subscriptΒ―π‘Žπ‘›\bar{b}_{n}=\bar{a}_{n}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, whence aΒ―n=2⁒aΒ―nβˆ’1subscriptΒ―π‘Žπ‘›2subscriptΒ―π‘Žπ‘›1\bar{a}_{n}=2\bar{a}_{n-1}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT. Therefore, aΒ―n=O⁒(2n)subscriptΒ―π‘Žπ‘›π‘‚superscript2𝑛\bar{a}_{n}=O(2^{n})overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_O ( 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) and so is bΒ―nsubscript¯𝑏𝑛\bar{b}_{n}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. The recurrence relations for cΒ―nsubscript¯𝑐𝑛\bar{c}_{n}overΒ― start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and dΒ―nsubscript¯𝑑𝑛\bar{d}_{n}overΒ― start_ARG italic_d end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are similar.

3.3. Average growth for products of A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(βˆ’2)𝐡2B(-2)italic_B ( - 2 )

Using the same notation in this case, we get

aΒ―n=12⁒aΒ―nβˆ’1+12⁒(aΒ―nβˆ’1βˆ’2⁒bΒ―nβˆ’1)=aΒ―nβˆ’1βˆ’bΒ―nβˆ’1subscriptΒ―π‘Žπ‘›12subscriptΒ―π‘Žπ‘›112subscriptΒ―π‘Žπ‘›12subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{a}_{n}=\frac{1}{2}\bar{a}_{n-1}+\frac{1}{2}(\bar{a}_{n-1}-2\bar{b}_{n-1})%=\bar{a}_{n-1}-\bar{b}_{n-1}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - 2 overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

bΒ―n=12⁒(2⁒aΒ―nβˆ’1+bΒ―nβˆ’1)+12⁒bΒ―nβˆ’1=aΒ―nβˆ’1+bΒ―nβˆ’1subscript¯𝑏𝑛122subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛112subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{b}_{n}=\frac{1}{2}(2\bar{a}_{n-1}+\bar{b}_{n-1})+\frac{1}{2}\bar{b}_{n-1}%=\bar{a}_{n-1}+\bar{b}_{n-1}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

From this, bΒ―n=2⁒aΒ―nβˆ’1βˆ’aΒ―nsubscript¯𝑏𝑛2subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›\bar{b}_{n}=2\bar{a}_{n-1}-\bar{a}_{n}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, and then aΒ―n=2⁒aΒ―nβˆ’1βˆ’2⁒aΒ―nβˆ’2subscriptΒ―π‘Žπ‘›2subscriptΒ―π‘Žπ‘›12subscriptΒ―π‘Žπ‘›2\bar{a}_{n}=2\bar{a}_{n-1}-2\bar{a}_{n-2}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT and bΒ―n=2⁒bΒ―nβˆ’1βˆ’2⁒bΒ―nβˆ’2subscript¯𝑏𝑛2subscript¯𝑏𝑛12subscript¯𝑏𝑛2\bar{b}_{n}=2\bar{b}_{n-1}-2\bar{b}_{n-2}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = 2 overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - 2 overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT. Solving the recurrence relation for aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, we get that aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is a linear combination of (1+i)nsuperscript1𝑖𝑛(1+i)^{n}( 1 + italic_i ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and (1βˆ’i)nsuperscript1𝑖𝑛(1-i)^{n}( 1 - italic_i ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Since (1+i)n=βˆ’(2)nsuperscript1𝑖𝑛superscript2𝑛(1+i)^{n}=-(\sqrt{2})^{n}( 1 + italic_i ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = - ( square-root start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT if n𝑛nitalic_n is divisible by 4, we have |aΒ―n|=O⁒((2)n)subscriptΒ―π‘Žπ‘›π‘‚superscript2𝑛|\bar{a}_{n}|=O((\sqrt{2})^{n})| overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | = italic_O ( ( square-root start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), and so is |bΒ―n|subscript¯𝑏𝑛|\bar{b}_{n}|| overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT |. The recurrence relations for |cΒ―n|subscript¯𝑐𝑛|\bar{c}_{n}|| overΒ― start_ARG italic_c end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | and |dΒ―n|subscript¯𝑑𝑛|\bar{d}_{n}|| overΒ― start_ARG italic_d end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | are similar.

3.4. Average growth for matrices from Pollicott’s paper

In [17], the author has considered the following two matrices:A=(2111),B=(3121)formulae-sequence𝐴2111𝐡3121A=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}3&1\\2&1\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ).

Using the same method as in the previous subsections, we have the following system of recurrence relations for the expectations:

aΒ―n=12⁒(2⁒aΒ―nβˆ’1+bΒ―nβˆ’1)+12⁒(3⁒aΒ―nβˆ’1+2⁒bΒ―nβˆ’1)=52⁒aΒ―nβˆ’1+32⁒bΒ―nβˆ’1subscriptΒ―π‘Žπ‘›122subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1123subscriptΒ―π‘Žπ‘›12subscript¯𝑏𝑛152subscriptΒ―π‘Žπ‘›132subscript¯𝑏𝑛1\bar{a}_{n}=\frac{1}{2}(2\bar{a}_{n-1}+\bar{b}_{n-1})+\frac{1}{2}(3\bar{a}_{n-%1}+2\bar{b}_{n-1})=\frac{5}{2}\bar{a}_{n-1}+\frac{3}{2}\bar{b}_{n-1}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 2 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 3 overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + 2 overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = divide start_ARG 5 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

bΒ―n=12⁒(aΒ―nβˆ’1+bΒ―nβˆ’1)+12⁒(aΒ―nβˆ’1+bΒ―nβˆ’1)=aΒ―nβˆ’1+bΒ―nβˆ’1subscript¯𝑏𝑛12subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛112subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscript¯𝑏𝑛1\bar{b}_{n}=\frac{1}{2}(\bar{a}_{n-1}+\bar{b}_{n-1})+\frac{1}{2}(\bar{a}_{n-1}%+\bar{b}_{n-1})=\bar{a}_{n-1}+\bar{b}_{n-1}overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT.

From the latter recurrence relation we have 32⁒bΒ―n=32⁒aΒ―nβˆ’1+32⁒bΒ―nβˆ’1=32⁒aΒ―nβˆ’1+(aΒ―nβˆ’52⁒aΒ―nβˆ’1)=aΒ―nβˆ’aΒ―nβˆ’132subscript¯𝑏𝑛32subscriptΒ―π‘Žπ‘›132subscript¯𝑏𝑛132subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›52subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›subscriptΒ―π‘Žπ‘›1\frac{3}{2}\bar{b}_{n}=\frac{3}{2}\bar{a}_{n-1}+\frac{3}{2}\bar{b}_{n-1}=\frac%{3}{2}\bar{a}_{n-1}+(\bar{a}_{n}-\frac{5}{2}\bar{a}_{n-1})=\bar{a}_{n}-\bar{a}%_{n-1}divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - divide start_ARG 5 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT - overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT. Hence 32⁒bΒ―nβˆ’1=aΒ―nβˆ’1βˆ’aΒ―nβˆ’232subscript¯𝑏𝑛1subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›2\frac{3}{2}\bar{b}_{n-1}=\bar{a}_{n-1}-\bar{a}_{n-2}divide start_ARG 3 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_b end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT.

Therefore, the first recurrence relation for aΒ―nsubscriptΒ―π‘Žπ‘›\bar{a}_{n}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT now gives usaΒ―n=52⁒aΒ―nβˆ’1+(aΒ―nβˆ’1βˆ’aΒ―nβˆ’2)=72⁒aΒ―nβˆ’1βˆ’aΒ―nβˆ’2subscriptΒ―π‘Žπ‘›52subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›272subscriptΒ―π‘Žπ‘›1subscriptΒ―π‘Žπ‘›2\bar{a}_{n}=\frac{5}{2}\bar{a}_{n-1}+(\bar{a}_{n-1}-\bar{a}_{n-2})=\frac{7}{2}%\bar{a}_{n-1}-\bar{a}_{n-2}overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG 5 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT + ( overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT ) = divide start_ARG 7 end_ARG start_ARG 2 end_ARG overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT - overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n - 2 end_POSTSUBSCRIPT. Solving this recurrence relation gives aΒ―n=O⁒((7+334)n)subscriptΒ―π‘Žπ‘›π‘‚superscript7334𝑛\bar{a}_{n}=O((\frac{7+\sqrt{33}}{4})^{n})overΒ― start_ARG italic_a end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_O ( ( divide start_ARG 7 + square-root start_ARG 33 end_ARG end_ARG start_ARG 4 end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ). Note that s=7+334β‰ˆ3.186𝑠73343.186s=\frac{7+\sqrt{33}}{4}\approx 3.186italic_s = divide start_ARG 7 + square-root start_ARG 33 end_ARG end_ARG start_ARG 4 end_ARG β‰ˆ 3.186.Then Ξ»=log⁑sπœ†π‘ \lambda=\log sitalic_Ξ» = roman_log italic_s (this is what can be called the β€œaverage Lyapunov exponent”) is approximately 1.159 in this case. This gives a pretty good upper bound for the actual Lyapunov exponent in this case, see Section 4.

3.5. A β€œshortcut”

Instead of solving a system of recurrence relations, one can just compute the matrix 12⁒(A+B)12𝐴𝐡\frac{1}{2}(A+B)divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_A + italic_B ), and the largest (by the absolute value) eigenvalue of this matrix will give the average growth rate we are looking for.

In particular, for the pair (A⁒(k),B⁒(k))π΄π‘˜π΅π‘˜(A(k),B(k))( italic_A ( italic_k ) , italic_B ( italic_k ) ) (with positive kπ‘˜kitalic_k), we have 12⁒(A⁒(k)+B⁒(k))=(1k2k21).12π΄π‘˜π΅π‘˜1π‘˜2π‘˜21\frac{1}{2}(A(k)+B(k))=\left(\begin{array}[]{cc}1&\frac{k}{2}\\\frac{k}{2}&1\end{array}\right).divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_A ( italic_k ) + italic_B ( italic_k ) ) = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL divide start_ARG italic_k end_ARG start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_k end_ARG start_ARG 2 end_ARG end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) .The largest eigenvalue of this matrix is 1+k21π‘˜21+\frac{k}{2}1 + divide start_ARG italic_k end_ARG start_ARG 2 end_ARG, so the average growth rate of entries in a random product of matrices is 1+k21π‘˜21+\frac{k}{2}1 + divide start_ARG italic_k end_ARG start_ARG 2 end_ARG.

However, justifying this β€œshortcut” would involve considering random variables whose values are matrices rather than numbers. This would take us too far away from the main theme of the present paper, to the realm of what has become known as β€œfree probability” (i.e., probability theory for non-commuting random variables), so we just refer an interested reader to [14] or [15].

4. Generic Growth and the Lyapunov Exponent

Now we are going to look at the growth of the entries in a random product of n𝑛nitalic_n matrices A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 ) (where each factor is A⁒(2)𝐴2A(2)italic_A ( 2 ) or B⁒(2)𝐡2B(2)italic_B ( 2 ) with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG). The first question is: how is this different from the situation we considered in Section 3?

To answer this, consider the following simple example. Let X1,…⁒Xnsubscript𝑋1…subscript𝑋𝑛X_{1},\ldots X_{n}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT be independent random variables, each taking just two values, 0 and 2, with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG. Then the expectation of their product X1⁒X2⁒⋯⁒Xnsubscript𝑋1subscript𝑋2β‹―subscript𝑋𝑛X_{1}X_{2}\cdots X_{n}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the product of their expectations and is therefore equal to 1. At the same time, the product X1⁒X2⁒⋯⁒Xnsubscript𝑋1subscript𝑋2β‹―subscript𝑋𝑛X_{1}X_{2}\cdots X_{n}italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_X start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is equal to 0 with probability 1βˆ’2βˆ’n1superscript2𝑛1-2^{-n}1 - 2 start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT.

Similar phenomenon occurs in our situation. We note that, while the average (or expected) growth rate of the largest entry of a product matrix is not too hard to compute in most cases (see our Section 3), computing generic growth rate is a lot harder.

Pollicott [17] considered a random product of n𝑛nitalic_n matrices where each matrix is either A𝐴Aitalic_A or B𝐡Bitalic_B with probability 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG and studied the growth of the norm of such a product as a function of n𝑛nitalic_n. To relate what we call the growth rate s𝑠sitalic_s (see the Introduction) to what is called the Lyapunov exponent Ξ»πœ†\lambdaitalic_Ξ» in the theory of stochastic processes, we mention that by a famous result of Kesten and Furstenberg [5],

(1)Ξ»=limnβ†’βˆž1n⁒log⁒‖M1⁒M2⁒⋯⁒Mnβ€–,πœ†subscript→𝑛1𝑛normsubscript𝑀1subscript𝑀2β‹―subscript𝑀𝑛\lambda=\lim_{n\to\infty}\frac{1}{n}\log||M_{1}M_{2}\cdots M_{n}||,italic_Ξ» = roman_lim start_POSTSUBSCRIPT italic_n β†’ ∞ end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_n end_ARG roman_log | | italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β‹― italic_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT | | ,

where log\logroman_log denotes the natural logarithm.

There are several well-known ways to define the norm of a matrix. If we use the sum of the absolute values of all the entries of a matrix M𝑀Mitalic_M as its norm β€–Mβ€–norm𝑀||M||| | italic_M | |, then we clearly have Ξ»=log⁑sπœ†π‘ \lambda=\log sitalic_Ξ» = roman_log italic_s by the above formula.

Pollicott mentions that β€œit is a fundamental problem to find both an explicit expression for Ξ»πœ†\lambdaitalic_Ξ» and a useful method of accurate approximation”. Whereas an explicit formula for Ξ»πœ†\lambdaitalic_Ξ» remains out of reach even for β€œnice” pairs of matrices like A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 ) (see Section 2.1), Pollicott [17] offered an algorithm that allows to determine the growth rate of the largest entry in a random product of n𝑛nitalic_n non-singular strictly positive matrices A𝐴Aitalic_A and B𝐡Bitalic_B with any desired precision.

To illustrate his method, Pollicott used the following two matrices: A=(2111),B=(3121)formulae-sequence𝐴2111𝐡3121A=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}3&1\\2&1\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ).First, we note:

Proposition 1.

The matrices A𝐴Aitalic_A and B𝐡Bitalic_B generate a free semigroup.

Proof.

Denote X=(1101),Y=(1011)formulae-sequence𝑋1101π‘Œ1011X=\left(\begin{array}[]{cc}1&1\\0&1\end{array}\right),\hskip 5.69046ptY=\left(\begin{array}[]{cc}1&0\\1&1\end{array}\right)italic_X = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_Y = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ). It is well known that X𝑋Xitalic_X and Yπ‘ŒYitalic_Y generate a free semigroup. Then, A=X⁒Yπ΄π‘‹π‘ŒA=XYitalic_A = italic_X italic_Y, B=X⁒Y2𝐡𝑋superscriptπ‘Œ2B=XY^{2}italic_B = italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

Since neither of the words X⁒Yπ‘‹π‘ŒXYitalic_X italic_Y and X⁒Y2𝑋superscriptπ‘Œ2XY^{2}italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is a suffix of the other, A𝐴Aitalic_A and B𝐡Bitalic_B generate a free semigroup.∎

The reason why we care about the semigroup generated by A𝐴Aitalic_A and B𝐡Bitalic_B being free is to avoid possible discomfort (for (semi)group theorists) in connection with the equality (1). Specifically, it may happen that if the semigroup is not free, the product of n𝑛nitalic_n matrices in (1) is equal to a product of less than n𝑛nitalic_n matrices, and then one may have technical issues in defining the limit. If both matrices are strictly positive, then this can happen only in some very rare cases (say, when A⁒B=B⁒A𝐴𝐡𝐡𝐴AB=BAitalic_A italic_B = italic_B italic_A), but if not, then the situation changes. For example, if C=(1101),D=(10βˆ’11)formulae-sequence𝐢1101𝐷1011C=\left(\begin{array}[]{cc}1&1\\0&1\end{array}\right),\hskip 5.69046ptD=\left(\begin{array}[]{cc}1&0\\-1&1\end{array}\right)italic_C = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_D = ( start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ), then C⁒D⁒C=D⁒C⁒D𝐢𝐷𝐢𝐷𝐢𝐷CDC=DCDitalic_C italic_D italic_C = italic_D italic_C italic_D, although this particular relation does not change the length of any product.

4.1. Upper bound on the Lyapunov exponent

Denote the average and generic growth rates of the entries in a product of multiple copies of given matrices A𝐴Aitalic_A and B𝐡Bitalic_B by sa⁒v⁒esubscriptπ‘ π‘Žπ‘£π‘’s_{ave}italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT and sg⁒e⁒nsubscript𝑠𝑔𝑒𝑛s_{gen}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT, respectively. If all entries of A𝐴Aitalic_A and B𝐡Bitalic_B are nonnegative, then sg⁒e⁒n≀sa⁒v⁒esubscript𝑠𝑔𝑒𝑛subscriptπ‘ π‘Žπ‘£π‘’s_{gen}\leq s_{ave}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT ≀ italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT (Cauchy–Schwarz type inequality).

Therefore, for random products of matrices with nonnegative entries, the Lyapunov exponent Ξ»πœ†\lambdaitalic_Ξ» is less than or equal to log⁑sa⁒v⁒esubscriptπ‘ π‘Žπ‘£π‘’\log s_{ave}roman_log italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT. This gives an easily computable upper bound on Ξ»πœ†\lambdaitalic_Ξ». We note that in [18] and [21], upper and lower bounds on Ξ»πœ†\lambdaitalic_Ξ» were obtained using altogether different techniques, with [21] specifically addressing the case where A=A⁒(k)π΄π΄π‘˜A=A(k)italic_A = italic_A ( italic_k ), B=B⁒(m)π΅π΅π‘šB=B(m)italic_B = italic_B ( italic_m ) (in the notation of our Section 2.1).

For the pair of matrices A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(m)π΅π‘šB(m)italic_B ( italic_m ), Corollary 1 from [21] gives the following upper bound: λ≀14⁒[c+log⁑(k⁒m+1/k⁒m)+12⁒log⁑(1+k⁒m)]πœ†14delimited-[]π‘π‘˜π‘š1π‘˜π‘š121π‘˜π‘š\lambda\leq\frac{1}{4}[c+\log(\sqrt{km}+1/\sqrt{km})+\frac{1}{2}\log(1+km)]italic_Ξ» ≀ divide start_ARG 1 end_ARG start_ARG 4 end_ARG [ italic_c + roman_log ( square-root start_ARG italic_k italic_m end_ARG + 1 / square-root start_ARG italic_k italic_m end_ARG ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_log ( 1 + italic_k italic_m ) ], where c𝑐citalic_c is a constant approximately equal to 1.0157.

In the case of matrices A⁒(1)𝐴1A(1)italic_A ( 1 ) and B⁒(1)𝐡1B(1)italic_B ( 1 ) (see Section 3.1), we have sa⁒v⁒e=1.5subscriptπ‘ π‘Žπ‘£π‘’1.5s_{ave}=1.5italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = 1.5, so our upper bound for Ξ»πœ†\lambdaitalic_Ξ» in this case is log⁑1.5β‰ˆ0.4051.50.405\log 1.5\approx 0.405roman_log 1.5 β‰ˆ 0.405. To compare, the upper bound provided by Corollary 1 from [21] is 0.514, so our upper bound is better in this case.

For the matrices A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 ), Corollary 1 from [21] gives λ≀0.684πœ†0.684\lambda\leq 0.684italic_Ξ» ≀ 0.684. We know from Section 3.2 that sa⁒v⁒e=2subscriptπ‘ π‘Žπ‘£π‘’2s_{ave}=2italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = 2 in this case. Therefore, λ≀log⁑2β‰ˆ0.693πœ†20.693\lambda\leq\log 2\approx 0.693italic_Ξ» ≀ roman_log 2 β‰ˆ 0.693. Thus, for A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 ) the upper bound provided by Corollary 1 from [21] is better than ours.

More generally, for the matrices A⁒(k)π΄π‘˜A(k)italic_A ( italic_k ) and B⁒(k)π΅π‘˜B(k)italic_B ( italic_k ), the upper bound from [21, Corollary 1] gives λ≀14⁒[c+log⁑(k+1k)+12⁒log⁑(1+k2)]πœ†14delimited-[]π‘π‘˜1π‘˜121superscriptπ‘˜2\lambda\leq\frac{1}{4}[c+\log(k+\frac{1}{k})+\frac{1}{2}\log(1+k^{2})]italic_Ξ» ≀ divide start_ARG 1 end_ARG start_ARG 4 end_ARG [ italic_c + roman_log ( italic_k + divide start_ARG 1 end_ARG start_ARG italic_k end_ARG ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_log ( 1 + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ], which is asymptotically equal to 12⁒log⁑k12π‘˜\frac{1}{2}\log kdivide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_log italic_k. At the same time, our method (see Section 3.5) gives λ≀log⁑(1+k2)πœ†1π‘˜2\lambda\leq\log(1+\frac{k}{2})italic_Ξ» ≀ roman_log ( 1 + divide start_ARG italic_k end_ARG start_ARG 2 end_ARG ). Thus, our method gives a tighter upper bound on Ξ»πœ†\lambdaitalic_Ξ» for small (positive) kπ‘˜kitalic_k, whereas the method of [21] gives a tighter upper bound for larger kπ‘˜kitalic_k.

For Pollicott’s matrices A=(2111),B=(3121)formulae-sequence𝐴2111𝐡3121A=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}3&1\\2&1\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ), we have sa⁒v⁒e=7+334β‰ˆ3.186subscriptπ‘ π‘Žπ‘£π‘’73343.186s_{ave}=\frac{7+\sqrt{33}}{4}\approx 3.186italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = divide start_ARG 7 + square-root start_ARG 33 end_ARG end_ARG start_ARG 4 end_ARG β‰ˆ 3.186, so our upper bound for Ξ»πœ†\lambdaitalic_Ξ» in this case is log⁑3.186β‰ˆ1.1593.1861.159\log 3.186\approx 1.159roman_log 3.186 β‰ˆ 1.159, whereas Pollicott [17] gives the following approximation for the actual value of Ξ»πœ†\lambdaitalic_Ξ»: 1.1433…

For the matrices A=(3113),B=(5225)formulae-sequence𝐴3113𝐡5225A=\left(\begin{array}[]{cc}3&1\\1&3\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}5&2\\2&5\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 3 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL 5 end_CELL start_CELL 2 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 5 end_CELL end_ROW end_ARRAY ) from the paper [9], we have sa⁒v⁒e=5.5subscriptπ‘ π‘Žπ‘£π‘’5.5s_{ave}=5.5italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = 5.5, so our upper bound for Ξ»πœ†\lambdaitalic_Ξ» in this case is log⁑5.5β‰ˆ1.75.51.7\log 5.5\approx 1.7roman_log 5.5 β‰ˆ 1.7. The upper bound in [9] is 1.66.., so it is tighter.

To summarize, our upper bounds are sometimes better, sometimes not, compared to those of [9] and [21]. At the same time, our combinatorial method is much simpler than analytical methods of [9], [18], and [21].

4.2. Computer experiments

We have run numerous computer experiments to approximate the generic growth rate (and therefore the Lyapunov exponent) for various pairs of matrices, and the results are summarized below.The results below were obtained by averaging over 1000 random products of 1000 matrices.

1. For the matrices A=(2111),B=(3121)formulae-sequence𝐴2111𝐡3121A=\left(\begin{array}[]{cc}2&1\\1&1\end{array}\right),\hskip 5.69046ptB=\left(\begin{array}[]{cc}3&1\\2&1\end{array}\right)italic_A = ( start_ARRAY start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 1 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) , italic_B = ( start_ARRAY start_ROW start_CELL 3 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 2 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ) from Pollicott’s paper [17], we have the generic growth rate sβ‰ˆ3.136𝑠3.136s\approx 3.136italic_s β‰ˆ 3.136, so Ξ»=log⁑sβ‰ˆ1.143πœ†π‘ 1.143\lambda=\log s\approx 1.143italic_Ξ» = roman_log italic_s β‰ˆ 1.143 (when rounded to 3 decimal places), which agrees with the results in [17].

2. For the matrices A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(2)𝐡2B(2)italic_B ( 2 ) (see Section 3.2), we have the generic growth rate sβ‰ˆ1.9𝑠1.9s\approx 1.9italic_s β‰ˆ 1.9, so Ξ»=log⁑sβ‰ˆ0.64πœ†π‘ 0.64\lambda=\log s\approx 0.64italic_Ξ» = roman_log italic_s β‰ˆ 0.64.

3. For the matrices A⁒(2)𝐴2A(2)italic_A ( 2 ) and B⁒(βˆ’2)𝐡2B(-2)italic_B ( - 2 ) (see Section 3.3), the generic growth rate is sβ‰ˆ1.68𝑠1.68s\approx 1.68italic_s β‰ˆ 1.68, so Ξ»=log⁑sβ‰ˆ0.52πœ†π‘ 0.52\lambda=\log s\approx 0.52italic_Ξ» = roman_log italic_s β‰ˆ 0.52.

5. Summary

In this section, we compare maximal, average, and generic growth rates of the entries in a product of matrices for several particular pairs of matrices.We denote these growth rates by sm⁒a⁒x,sa⁒v⁒esubscriptπ‘ π‘šπ‘Žπ‘₯subscriptπ‘ π‘Žπ‘£π‘’s_{max},~{}s_{ave}italic_s start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT, and sg⁒e⁒nsubscript𝑠𝑔𝑒𝑛s_{gen}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT, respectively. Also recall that the Lyapunov exponent Ξ»πœ†\lambdaitalic_Ξ» is the natural logarithm of sg⁒e⁒nsubscript𝑠𝑔𝑒𝑛s_{gen}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT, and that sg⁒e⁒n≀sa⁒v⁒esubscript𝑠𝑔𝑒𝑛subscriptπ‘ π‘Žπ‘£π‘’s_{gen}\leq s_{ave}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT ≀ italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT for matrices with nonnegative entries.

βˆ™βˆ™\bulletβˆ™ For the pair (A⁒(1),B⁒(1))𝐴1𝐡1(A(1),B(1))( italic_A ( 1 ) , italic_B ( 1 ) ), we have: sm⁒a⁒x=12⁒(1+5)β‰ˆ1.618subscriptπ‘ π‘šπ‘Žπ‘₯12151.618s_{max}=\frac{1}{2}(1+\sqrt{5})\approx 1.618italic_s start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 1 + square-root start_ARG 5 end_ARG ) β‰ˆ 1.618, sa⁒v⁒e=1.5subscriptπ‘ π‘Žπ‘£π‘’1.5s_{ave}=1.5italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = 1.5, sg⁒e⁒nβ‰ˆ1.49subscript𝑠𝑔𝑒𝑛1.49s_{gen}\approx 1.49italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 1.49 (the latter is based on computer experiments), so Ξ»=log⁑sg⁒e⁒nβ‰ˆ0.4πœ†subscript𝑠𝑔𝑒𝑛0.4\lambda=\log s_{gen}\approx 0.4italic_Ξ» = roman_log italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 0.4.

βˆ™βˆ™\bulletβˆ™ For the pair (A⁒(2),B⁒(2))𝐴2𝐡2(A(2),B(2))( italic_A ( 2 ) , italic_B ( 2 ) ), we have: sm⁒a⁒x=1+2β‰ˆ2.41subscriptπ‘ π‘šπ‘Žπ‘₯122.41s_{max}=1+\sqrt{2}\approx 2.41italic_s start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = 1 + square-root start_ARG 2 end_ARG β‰ˆ 2.41, sa⁒v⁒e=2subscriptπ‘ π‘Žπ‘£π‘’2s_{ave}=2italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = 2, sg⁒e⁒nβ‰ˆ1.9subscript𝑠𝑔𝑒𝑛1.9s_{gen}\approx 1.9italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 1.9 (the latter is based on computer experiments), so Ξ»=log⁑sg⁒e⁒nβ‰ˆ0.64πœ†subscript𝑠𝑔𝑒𝑛0.64\lambda=\log s_{gen}\approx 0.64italic_Ξ» = roman_log italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 0.64.

βˆ™βˆ™\bulletβˆ™ For the pair (A⁒(2),B⁒(βˆ’2))𝐴2𝐡2(A(2),B(-2))( italic_A ( 2 ) , italic_B ( - 2 ) ), we have: sm⁒a⁒x=2+3β‰ˆ1.93subscriptπ‘ π‘šπ‘Žπ‘₯231.93s_{max}=\sqrt{2+\sqrt{3}}\approx 1.93italic_s start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = square-root start_ARG 2 + square-root start_ARG 3 end_ARG end_ARG β‰ˆ 1.93 (based on computer experiments), sa⁒v⁒e=2subscriptπ‘ π‘Žπ‘£π‘’2s_{ave}=\sqrt{2}italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = square-root start_ARG 2 end_ARG, sg⁒e⁒nβ‰ˆ1.68subscript𝑠𝑔𝑒𝑛1.68s_{gen}\approx 1.68italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 1.68 (the latter is based on computer experiments), so Ξ»=log⁑sg⁒e⁒nβ‰ˆ0.52πœ†subscript𝑠𝑔𝑒𝑛0.52\lambda=\log s_{gen}\approx 0.52italic_Ξ» = roman_log italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 0.52.

βˆ™βˆ™\bulletβˆ™ For the pair of matrices in Pollicott’s paper [17] (see our Section 3.4), we have: sm⁒a⁒x=2+3β‰ˆ3.73subscriptπ‘ π‘šπ‘Žπ‘₯233.73s_{max}=2+\sqrt{3}\approx 3.73italic_s start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = 2 + square-root start_ARG 3 end_ARG β‰ˆ 3.73, sa⁒v⁒e=7+334β‰ˆ3.186subscriptπ‘ π‘Žπ‘£π‘’73343.186s_{ave}=\frac{7+\sqrt{33}}{4}\approx 3.186italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT = divide start_ARG 7 + square-root start_ARG 33 end_ARG end_ARG start_ARG 4 end_ARG β‰ˆ 3.186, sg⁒e⁒nβ‰ˆ3.136subscript𝑠𝑔𝑒𝑛3.136s_{gen}\approx 3.136italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 3.136 (the latter is based on computer experiments), so Ξ»=log⁑sg⁒e⁒nβ‰ˆ1.143πœ†subscript𝑠𝑔𝑒𝑛1.143\lambda=\log s_{gen}\approx 1.143italic_Ξ» = roman_log italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT β‰ˆ 1.143.

We note that the only pair that has sg⁒e⁒n>sa⁒v⁒esubscript𝑠𝑔𝑒𝑛subscriptπ‘ π‘Žπ‘£π‘’s_{gen}>s_{ave}italic_s start_POSTSUBSCRIPT italic_g italic_e italic_n end_POSTSUBSCRIPT > italic_s start_POSTSUBSCRIPT italic_a italic_v italic_e end_POSTSUBSCRIPT is the pair (A⁒(2),B⁒(βˆ’2))𝐴2𝐡2(A(2),B(-2))( italic_A ( 2 ) , italic_B ( - 2 ) ). This is because the matrix B⁒(βˆ’2)𝐡2B(-2)italic_B ( - 2 ) has a negative entry.

References

  • [1]Y. Aikawa, H. Jo, S. Satake, Left-right Cayley hashing: a new frameworkfor provably secure hash functions, Math. Cryptology 3 (2023), 53–-65.
  • [2]J. Bourgain, A. Gamburd, Uniform expansion bounds for Cayleygraphs of S⁒L2⁒(𝔽p)𝑆subscript𝐿2subscript𝔽𝑝SL_{2}(\mathbb{F}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ). Ann. of Math. (2) 167(2008), 625–642.
  • [3]L. Bromberg, V. Shpilrain, A. Vdovina, Navigating in the Cayley graph of S⁒L2⁒(𝔽p)𝑆subscript𝐿2subscript𝔽𝑝SL_{2}(\mathbb{F}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) and applications tohashing, Semigroup Forum 94 (2017), 314–324.
  • [4]A. Chorna, K. Geller, V. Shpilrain, Ontwo-generator subgroups of S⁒L2⁒(β„€)𝑆subscript𝐿2β„€SL_{2}(\mathbb{Z})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ), S⁒L2⁒(β„š)𝑆subscript𝐿2β„šSL_{2}(\mathbb{Q})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Q ), and S⁒L2⁒(ℝ)𝑆subscript𝐿2ℝSL_{2}(\mathbb{R})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ),J. Algebra 478 (2017), 367–381.
  • [5]H. Furstenberg, H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 457–469.
  • [6]S. Han, A. M. Masuda, S. Singh, J. Thiel, Maximal entries of elementsin certain matrix monoids, Integers 20 (2020), paper No. A31.
  • [7]K. G. Hare, I. D. Morris, N. Sidorov, J. Theys, An explicit counterexample to the Lagarias-Wang finiteness conjecture, Adv. Math. 226 (2011), 4667–4701.
  • [8]H. A. Helfgott,Growth and generation in SL2(β„€/pβ„€SL_{2}(\mathbb{Z}/p\mathbb{Z}italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z / italic_p blackboard_Z) Ann. ofMath. (2) 167 (2008), 601–623.
  • [9]N. Jurga and I. Morris, Effective estimates of the top Lyapunov exponents for random matrix products, Nonlinearity 32 (2019), 4117–4146.
  • [10]S. Kim, T. Koberda, Non-freeness of groups generated by two parabolic elements with small rational parameters, Michigan Math. J. 71 (2022), 809–833.
  • [11]J. C. Lagarias, Y. Wang, The finiteness conjecture for the generalized spectral radius of a set of matrices, Linear Algebra Appl. 214 (1995) 17–42.
  • [12]M. Larsen, Navigating the Cayley graph of S⁒L2⁒(𝔽p)𝑆subscript𝐿2subscript𝔽𝑝SL_{2}(\mathbb{F}_{p})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), Int. Math. Res. Notes 27 (2003), 1465-–1471.
  • [13]C. Le Coz, C. Battarbee, R. Flores, T. Koberda, D. Kahrobaei, Post-quantumhash functions using S⁒Ln⁒(𝔽p)𝑆subscript𝐿𝑛subscript𝔽𝑝SL_{n}(\mathbb{F}_{p})italic_S italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), https://arxiv.org/abs/2207.03987
  • [14]J. A. Mingo, R. Speicher, Free Probability and Random Matrices. Fields Institute Monographs, Vol. 35, Springer, New York, 2017.
  • [15]A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
  • [16]A. Olshanskii, V. Shpilrain, Linear average-case complexity of algorithmic problems in groups, https://arxiv.org/abs/2205.05232
  • [17]M. Pollicott, Maximal Lyapunov exponents for random matrix products, Invent. Math. 181 (2010), 209–226.
  • [18]M. Pollicott, Effective estimates of Lyapunov exponentsfor random products of positive matrices, Nonlinearity 34 (2021), 6705–6718.
  • [19]I. Smilga, New sequences of non-free rational points, C. R. Math. Acad. Sci. Paris 359 (2021), 983–989.
  • [20]V. Shpilrain, B. Sosnovski, Cayley hashing with cookies, preprint.https://arxiv.org/abs/2402.04943
  • [21]R. Sturman, J.-L. Thiffeault, Lyapunov exponents for the random product of two shears, J. Nonlinear Sci. 29 (2019), 593–620.
  • [22]J.-P. Tillich and G. ZΓ©mor, Hashing with S⁒L2𝑆subscript𝐿2SL_{2}italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, in CRYPTO1994, Lecture Notes Comp. Sci. 839 (1994), 40–49.
Growth in products of matrices: fastest, average, and generic (2024)

References

Top Articles
Latest Posts
Article information

Author: Lakeisha Bayer VM

Last Updated:

Views: 5803

Rating: 4.9 / 5 (49 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Lakeisha Bayer VM

Birthday: 1997-10-17

Address: Suite 835 34136 Adrian Mountains, Floydton, UT 81036

Phone: +3571527672278

Job: Manufacturing Agent

Hobby: Skimboarding, Photography, Roller skating, Knife making, Paintball, Embroidery, Gunsmithing

Introduction: My name is Lakeisha Bayer VM, I am a brainy, kind, enchanting, healthy, lovely, clean, witty person who loves writing and wants to share my knowledge and understanding with you.